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OverviewOverview

Introduction to discrete-time survival 
analysis in a latent variable framework
Missingness for single indicators of event 
occurrence
Measurement error for single and multiple 
indicators of event occurrence



Discrete timeDiscrete time--toto--event dataevent data

Event history:  A record of if and when an 
event occurred for each individual in a 
sample during a finite observation period.
Discrete time:
1)  The timing of an event is continuous but 
is only recorded for an interval of time, e.g., 
age (in years) of first alcohol use.
2)  The timing of an event is itself discrete, 
e.g., grade retention.



Let T be the time interval of the event 
where T∈{1,2,…,J}

PS(j), called the survival probability, is 
defined as the probability of “surviving” 
beyond time interval j, i.e., the 
probability that the event occurs after 
interval j:  

PS(j) = P(T > j).

Survival probabilitySurvival probability



Hazard probabilityHazard probability

Ph(j), called the hazard probability, is 
defined as the probability of the event 
occurring in the time interval j, provided it 
has not occurred prior to j:  

Ph(j) = P(T = j | T ≥ j).

Essentially, Ph(j) is the probability of the 
event occurring in time interval j among 
those at-risk in j.



The relationship between PS(j) and Ph(j) is given by

PS(j) = P(T > j) = 

P(T > j | T ≥ j) ×
P(T > j – 1 | T ≥ j – 1) × …
P(T > 1 | T ≥ 1) =

Most survival models are specified in terms of the 
hazard probabilities.


a1

j
1  Pha



Drinking hazard probability
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Likelihood for complete dataLikelihood for complete data

Li  PhTi 
a1

Ti1
1  Pha

where eij 
1 if Ti  j

0 if Ti  j

 
a1

Ti

PrEa  eia

Phj  PrEj  1



CensoringCensoring

Missing data is endemic in longitudinal 
studies; survival studies are no 
exception.

Various mechanisms for missing data  
in the survival context are referred to 
under the unifying term, censoring, 
indicating that the event times for some 
subjects are unknown to the researcher.



Right censoring:  Occurs when a subject in the 
sample has not experienced the event of interest 
at the end of the observation period.  It is 
assumed that the event eventually occurs 
sometime after the end of the study.
Left censoring: Occurs when a subject in the 
sample has experienced the event of  interest 
prior to the onset of observation.
Interval censoring:  Occurs when a subject is 
only known to have experienced the event of 
interest within a given time interval but the exact 
time is unknown.



The most typical kind of missing data are 
right-censored and this type of missingness is 
the easiest to deal with in the data analysis.

Censoring can be either noninformative or 
informative (analogous to ignorable and 
nonignorable in missing data terms).  In 
conventional survival analysis, censoring is 
assumed to be noninformative which means 
that the distribution of censoring times is 
independent of event times, conditional on 
the set of observed covariates.



Observed data likelihoodObserved data likelihood

Li 

PhTi 
a1

Ti1
1  Pha if Ti  Ci


a1

Ci1
1  Pha if Ti  Ci

where Ti is the event time and Ci is the 
right-censoring time.  Ti is only 
observed if Ti ≤ Ci.



Li  
a1,..,J:e ia.

PrEa  eia

where J  maxminTi,Ci,i

and eij 

1 if Ti  j

0 if Ti,Ci  j
. if Ti  j or Ci  j



 

 i    e1 e2 e3 e4 e5 

1 0 0 1 . . 

2 0 0 . . . 

3 0 0 0 0 0 
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Phj  PrEj  1
Maximum likelihood estimation under MAR
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MissingnessMissingness for single for single 
indicators of event occurrence indicators of event occurrence 



Risk status and event occurrenceRisk status and event occurrence

Estimating the hazard probability for a 
given time period depends on knowing 
who is at-risk at the beginning of the time 
period and who experiences the event 
during the time period.  
For (non-recurring) single or competing 
risks, anyone who has not experienced an 
event is considered at-risk.



In classical survival analysis, it is assumed that 
event occurrence (the “if”) and, therefore, risk 
status, can be accurately determined even if 
the exact timing of the event (the “when”) is 
unknown or cannot be accurately and/or 
precisely assessed.
If the occurrence of the event precludes further 
observation of the individual then if an 
individual misses a follow-up but returns at a 
later observation occasion, it could be inferred 
that the event had not occurred and that the 
individual is still at-risk.



If event occurrence does not preclude 
further observation then if an individual 
misses a follow-up but returns at a later 
observation occasion, it could be 
ascertained where the event occurred 
during the absence from the study.  If 
so, the individual’s event time would be 
interval censored.  If not, the individual 
would still be at-risk.



Sometimes, event occurrence does not bar 
subsequent observations but information 
about event occurrence during the period 
of absence from the study is missing.  In 
this case, the risk status of the individual 
when he/she returns to the study is 
unknown.



ExampleExample
Event:  Age of first alcohol use
Intake question:  Have you ever used?
– Only individuals answering “no” are at-risk for 

first use.  The rest are left-censored.
Yearly follow-up:  How much alcohol have 
you consumed in the past year?
– The first year an at-risk individual has an 

answer other than “none” marks the age of the 
event and termination of risk.



If an individual, still at-risk, misses one or 
more years of follow-up prior to termination 
of risk, there is no way of knowing (from 
the given data) whether the event occurred 
during the one or more years that they 
were not questioned about yearly use and, 
thus, his/her risk status upon study reentry 
is unknown.



ExampleExample
Event:  Grade of first school removal 
(suspension or expulsion)
Observation begins at T=0, when all 
subjects are first at-risk for the event.
Yearly follow-up:  Examination of school 
records in participating school districts for 
occurrence of school removal.



If a child, still at-risk, moves out of the 
study area for one or more grades and 
then returns to the study area, it is 
unknown whether the child experienced a 
school removal during his/her time outside 
the study area and, thus, his/her risk status 
upon study reentry is unknown.



 

 i    e1 e2 e3 e4 e5 

1 0 0 1 . 0 

2 0 0 . 0 1 

3 0 . . 1 0 



SolutionsSolutions
Right-censor at-risk individuals at the end of the 
last period of observation before study absence.
– Will not bias results as long as the (unobserved) event 

time is independent of the timing of the study absence.
– Doesn’t use any observation following study reentry 

that could assist in the determination of whether the 
event occurred during the absence.

– Prevents inclusion of those individuals in any 
simultaneous modeling of other outcomes conditional 
on event occurrence, e.g., use following onset, time 
between school removals, etc.



 

 i    e1 e2 e3 e4 e5 

1 0 0 1 . . 

2 0 0 . . . 

3 0 . . . . 



Treat event occurrence as a transition between 
partially latent risk states
– At T=0, all subjects are known to be in an at-risk state, 

e.g., never used alcohol, never been to school, etc.
– All subjects have a non-zero probability of 

experiencing the event in the first time period and 
transitioning out of the at-risk state and into a non-risk 
state, i.e., a state represented by having experienced
the event.  

– Subjects may return to a state that looks the same at 
the initial at-risk state in terms of observable behavior 
but is different because they are, by definition, no 
longer at-risk, e.g., a “never-user” initiates use and 
then returns to a state of non-use.



u0

e0
K0=1

u1

e1
K1=2

u2

e2
K2=3

u3

e3
K3=3

… uJ

eJ
KJ=3

ej = 0 : Never-used

ej = 1 : Onset/recurrence 

ej = 2 : Non-use



Measurement model:Measurement model:
Pr(u0 = 0 | e0 = 0) = 1

Pr(u1 = 0 | e1 = 0) = 1
Pr(u1 = 1 | e1 = 1) = 1

Pr(uj = 1 | ej = 1) = 1
Pr(uj = 0 | ej = 0 or 2) = 1 for j ≥ 2



Transition model:Transition model:

...e0 = 2

...e0 = 1

.Ph(1)1–Ph(1)e0 = 0

e1 = 2e1 = 1e1 = 0τ01

Restrictions for T=0 to T=1:Restrictions for T=0 to T=1:



Transition model:Transition model:
Restrictions for T=1 to T=2:Restrictions for T=1 to T=2:

...e1 = 2

**0e1 = 1

0Ph(2)1–Ph(2)e1 = 0

e2 = 2e2 = 1e2 = 0τ12



Transition model:Transition model:
Restrictions for T=j to T=j+1 (jRestrictions for T=j to T=j+1 (j≥≥2)2)::

**0ej = 2

**0ej = 1

0Ph(j+1)1–Ph(j+1)ej = 0

ej+1 = 2ej+1 = 1ej+1 = 0τj,j+1



 

 i    T=1 T=2 T=3 T=4 T=5 

1 u1=0 u2=0 u3=1 u4=. u5=0 

 e1=0 e2=0 e3=1 e4=1/2 e5=2 

2 u1=0 u2=0 u3=. u4=0 u5=1 

 e1=0 e2=0 e3=0/1 e4=0/2 e5=1 

3 u1=0 u2=. u3=. u4=1 u5=0 

 e1=0 e2=0/1 e3=0/1/2 e4=1 e5=2 



Measurement error for single Measurement error for single 
and multiple indicators of and multiple indicators of 

event occurrence event occurrence 



Multiple indicators of event occurrenceMultiple indicators of event occurrence

In some applications, event occurrence is     
inferred through indirect observation of the 
presence/absence of one or more symptoms  
that are used collectively (e.g., behavior 
checklist) to arrive at a “definitive” clinical 
diagnosis.
– Time from first alcohol use to alcohol use 

disorder (AUD)
– Time from treatment to AUD relapse
– Onset age of first depressive episode
– Duration of depressive episode



Quantifying errorQuantifying error

Symptom sensitivity:  P(upj = 1 | ej = 1)
Symptom specificity: P(upj = 0 | ej ≠ 1)

u1j u2j u3j

ej
Kj=3



The trouble with errorThe trouble with error

Ignoring measurement error on event 
occurrence (and, thus, risk status) can 
results in either upward- or downward-
biased hazard probability estimates.
The impact of measurement error on the 
baseline hazard estimates depends on 
– Number of symptoms
– Sensitivity and specificity of each symptom
– “True” baseline rate  



The trouble with error for the baseline The trouble with error for the baseline 
hazard probability estimates:hazard probability estimates:

0.280.190.150.91.0

0.180.090.051.00.9

0.200.100.051.01.0

0.200.100.05SpecificitySensitivity

Baseline hazard probabilitySymptom error



The trouble with error for hazard odds The trouble with error for hazard odds 
ratio estimates:ratio estimates:

1.341.130.91.0

2.001.351.00.9

2.001.501.01.0

hOR=2.0hOR=1.5SpecificitySensitivity

Hazard odds ratioSymptom error
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